

Dual-Polarity Tracking Voltage Regulator

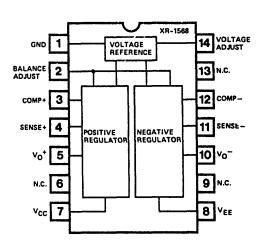
GENERAL DESCRIPTION

The XR-1468/1568 is a dual polarity tracking voltage regulator, internally trimmed for symmetrical positive and negative 15V outputs. Current output capability is 100 mA, and may be increased by adding external pass transistors. The device is intended for local "on-card" regulation, which eliminates the distribution problems associated with single point regulation.

The XR-1468CN and XR-1568N are guaranteed over the 0°C to 70°C commercial temperature range. The XR-1568M is rated over the full military temperature range of -55°C to +125°C.

FEATURES

Internally Set for ±15V Outputs ±100 mA Peak Output Current Output Voltages Balanced Within 1% (XR-1568) 0.06% Line and Load Regulation Low Stand-By Current Output Externally Adjustable from ±8 to ±20 Volts Externally Adjustable Current Limiting Remote Sensing


APPLICATIONS

Main Regulation in Small Instruments On-Card Regulation in Analog and Digital Systems Point-of-Load Precision Regulation

ABSOLUTE MAXIMUM RATINGS

±30 Volts Power Supply 4.0 Ohms Minimum Short-Circuit Resistance ± 100 mA Load Current, Peak Power Dissipation 1.0 Watt Ceramic (N) Package Derate Above +25°C 6.7 mW/°C Operating Temperature -55°C to +125°C XR-1568M 0°C to +70°C XR-1568/XR-1468C -65°C to +150°C Storage Temperature

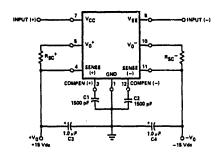
FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Temperature	Output Offset	Package
XR-1568M	-55°C to +125°C	± 150 mV max	Ceramic
XR-1568N	0°C to +70°C	± 150 mV max	Ceramic
XR-1468CN	0°C to +70°C	± 300 mV max	Ceramic

SYSTEM DESCRIPTION

The XR-1468/1568 is a dual polarity tracking voltage regulator combining two separate regulators with a common reference element in a single monolithic circuit, thus providing a very close balance between the positive and negative output voltages. Outputs are internally set to ± 15 Volts but can be externally adjusted between ± 8.0 to ± 20 Volts with a single control. The circuit features ± 100 mA output current, with externally adjustable current limiting, and provision for remote voltage sensing.


XR-1468/1568

ELECTRICAL CHARACTERISTICS

Test conditions: ($V_{CC} = +20V$, $V_{EE} = -20V$, C1 = C2 = 1500 pF, C3 = C4 = 1.0 μF, $R_{SC}^{+} = R_{SC}^{-} = 4.0$ Ω. $I_{L}^{+} = I_{L}^{-} = 0$, $I_{C}^{-} = +25$ °C unless otherwise noted.)

	XR-1468C			XR-1568			
PARAMETERS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Output Voltage	14.5	15	15.5	14.8	15	15.2	Vdc
Input Voltage	_		30	_	_	30	Vdc
Input-Output Voltage Differential	2.0	_	_	2.0		_	Vdc
Output Voltage Balance	_	±50	± 300		±50	± 150	mV
Line Regulation Voltage (V _{in} = 18V to 30V) (T _L † to T _H)††	_	_	10 20	_	_	10 20	mV
Load Regulation Voltage							mV
(I _L = 0 to 50 mA, T _J = constant) (T _A = T _L to T _H)	_	_	10 30	_		10 30	
Output Voltage Range	8.0	_	20	8.0		20	Vdc
Ripple Rejection (f = 120 Hz)	_	75	_	_	75	_	dB
Output Voltage Temperature Stability (T _L to T _H)	_	0.3	1.0	_	0.3	1.0	%
Short-Circuit Limit (R _{SC} = 10 ohms)	_	60			60		mA
Output Noise Voltage (BW = 10 Hz - 10 kHz)	_	100			100	_	μV(rms)
Positive Standby Current (Vin = +30V)	_	2.4	4.0	_	2.4	4.0	mA
Negative Standby Current (Vin = -30V)		1.0	3.0	_	1.0	3.0	mA
Long-Term Stability		0.2	_	_	0.2	_	%/kHr

 $^{\dagger}T_L = 0^{\circ}C \text{ for XR-1468C/1568}$ = -55°C for XR-1568M $††T_{H} = +70^{\circ}\text{C for XR-1468C/1568}$ = +125°C for XR-1568M T_J = Junction Temp. T_C = Case Temp.

C1 and C2 should be located as close to the device as possible, A 0.1 µF ceramic capacitos may be required on the input lines if the device is located an appreciable distance from the rectifier filter capacitors.

C3 and C4 may be increased to improve load transient response and to reduct the output noise voltage. At low temperature operation, it may be necessary to bypass C4 with a 0.1 µF overance disc capacitor.

Figure 1. Basic 50 mA Regulator

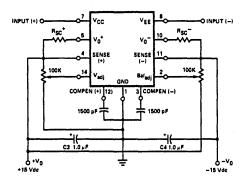


Figure 2. Voltage Adjust and Balance Adjust Circuit