Sensors #### Edition 2008-01 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2008. All Rights Reserved. #### Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. #### Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. ### TLE4921-5U | Revision History: Previous Version: | | 2008-01 | V 1.1 | | | | | |-------------------------------------|----------------------|--|-----------|--|--|--|--| | | | V1.0 | | | | | | | Page | Subjects (| major changes since last revision) | | | | | | | 5 | Ordering (| Ordering Code changed | | | | | | | 11 | "Output le | akage current" unit corrected | | | | | | | 20 | Figures "D corrected | elay Time between Switching Threshold" excha | inged and | | | | | | 21 | Figure "De | elay Time versus Differential Field" corrected | | | | | | | | | | | | | | | #### We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: sensors@infineon.com | Table of | Contents | Page | |------------------------|--|--------| | 1
1.1
1.2 | Overview | 5 | | 2
2.1
2.2
2.3 | General Block Diagram Functional Description Circuit Description (see Figure 2) | 7
8 | | 3 | Maximum Ratings | 9 | | 4 | Operating Range | 10 | | 5 | Electrical and Magnetic Parameters | 11 | | 6 | Application Configurations | 14 | | 7 | Typical Performance Characteristics | 18 | | 8 | Package Outlines | 25 | ## **Dynamic Differential Hall Effect Sensor IC** #### TLE4921-5U #### **Bipolar IC** ## 1 Overview #### 1.1 Features - Advanced performance - High sensitivity - Symmetrical thresholds - High piezo resistivity - Reduced power consumption - South and north pole pre-induction possible - AC coupled - Digital output signal - Two-wire and three-wire configuration possible - Large temperature range - Large airgap - Low cut-off frequency - Protection against overvoltage - Protection against reversed polarity - Output protection against electrical disturbances The differential Hall Effect sensor TLE4921-5U provides a high sensitivity and a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. TLE4921-5U is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit (based on Hall effect) provides a digital signal output with frequency proportional to the speed of rotation. Unlike other rotational sensors differential Hall ICs are not influenced by radial vibration within the effective airgap of the sensor and require no external signal processing. | Туре | Marking | Ordering Code | Package | |------------|---------|---------------|------------| | TLE4921-5U | 215U | SP000013593 | PG-SSO-4-1 | **Overview** ## 1.2 Pin Configuration (view on branded side of component) Figure 1 Table 1 Pin Definitions and Functions | Pin No. | Symbol | Function | |---------|---------|----------------| | 1 | V_{S} | Supply voltage | | 2 | Q | Output | | 3 | GND | Ground | | 4 | C | Capacitor | General ## 2 General ## 2.1 Block Diagram Figure 2 Block Diagram General ## 2.2 Functional Description The Differential Hall Sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (**south or north** pole of the magnet attached to the rear unmarked side of the IC package). Using an external capacitor the generated Hall voltage signal is slowly adjusted via an active high pass filter with a low cut-off frequency. This causes the output to switch into a biased mode after a time constant is elapsed. The time constant is determined by the external capacitor. Filtering avoids ageing and temperature influence from Schmitt-trigger input and eliminates device and magnetic offset. The TLE4921-5U can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal. Furthermore, the TLE4921-5U can be operated in a two-wire as well as in a three-wire-configuration. The output is logic compatible by high/low levels regarding on and off. ## 2.3 Circuit Description (see Figure 2) The TLE4921-5U is comprised of a supply voltage reference, a pair of Hall probes spaced at 2.5 mm, differential amplifier, filter for offset compensation, Schmitt trigger, and an open collector output. The TLE4921-5U was designed to have a wide range of application parameter variations. Differential fields up to ± 80 mT can be detected without influence to the switching performance. The pre-induction field can either come from a magnetic south or north pole, whereby the field strength up to 500 mT or more will not influence the switching points. The improved temperature compensation enables a superior sensitivity and accuracy over the temperature range. Finally the optimized piezo compensation and the integrated dynamic offset compensation enable easy manufacturing and elimination of magnet offsets. Protection is provided at the input/supply (pin 1) for overvoltage and reverse polarity and against over-stress such as load dump, etc., in accordance with ISO-TR 7637 and DIN 40839. The output (pin 2) is protected against voltage peaks and electrical disturbances. ## **Maximum Ratings** ## 3 Maximum Ratings Table 2 Absolute Maximum Ratings $T_{\rm i}$ = -40°C to 150°C | Parameter | Symbol | Lim | it Values | Unit | Remarks | |--|-----------------|-------------------|-----------|------|--------------------| | | | min. | max. | | | | Supply voltage | V_{S} | -35 ¹⁾ | 30 | V | | | Output voltage | V_{Q} | -0.7 | 30 | V | | | Output current | I_{Q} | _ | 50 | mA | | | Output reverse current | -I _Q | _ | 50 | mA | | | Capacitor voltage | V_{C} | -0.3 | 3 | V | | | Junction | $T_{\rm j}$ | _ | 150 | °C | 5000 h | | temperature | | _ | 160 | | 2500 h | | | | _ | 170 | | 1000 h | | | | _ | 210 | | 40 h | | Storage temperature | T_{S} | -40 | 150 | °C | | | Thermal resistance PG-SSO-4-1 | R_{thJA} | _ | 190 | K/W | | | Current through input-protection device | I_{SZ} | _ | 200 | mA | t < 2 ms; v = 0.1 | | Current through output-protection device | I_{QZ} | _ | 200 | mA | t < 2 ms; v = 0.1 | ¹⁾ Reverse current < 10 mA **Operating Range** ## 4 Operating Range ## Table 3 ESD Protection Human Body Model (HBM) tests according to: Standard EIA/JESD22-A114-B HBM | Parameter | Symbol | Limit \ | Values | Unit | Remarks | |------------------|-----------|---------|---------------|------|---------| | | | min. | max. | | | | ESD - protection | V_{ESD} | _ | ±2 | kV | | Table 4 Operating Range | Parameter | Symbol | Limit Values | | | Unit | Remarks | |------------------------|------------|--------------|------|------|------|--| | | | min. | typ. | max. | | | | Supply voltage | V_{S} | 4.5 | _ | 24 | V | | | Junction | T_{j} | -40 | _ | 150 | °C | 5000 h | | temperature | | _ | _ | 160 | | 2500 h | | | | _ | _ | 170 | | 1000 h | | Pre-induction | B_0 | -500 | _ | 500 | mT | at Hall probe;
independent of
magnet orientation | | Differential induction | ΔB | -80 | _ | 80 | mT | | Note: In the operating range the functions given in the circuit description are fulfilled. ## **Electrical and Magnetic Parameters** ## **5** Electrical and Magnetic Parameters Table 5 Electrical Characteristics | Parameter | Symbol | L | imit Val | ues | Unit | Test
Condition | Test | |---|---|--------------|-------------|----------------|----------------|--|---------| | | | min. | typ. | max. | | | Circuit | | Supply current | I_{S} | 3.8 | 5.3 | 8.0 | mA | $V_{\rm Q}$ = high $I_{\rm O}$ = 0 mA | 1 | | | | 4.3 | 5.9 | 8.8 | mA | $V_{\rm Q}$ = low $I_{\rm Q}$ = 40 mA | 1 | | Output
saturation
voltage | V_{QSAT} | _ | 0.25 | 0.6 | V | $I_{\rm Q}$ = 40 mA | 1 | | Output leakage current | I_{QL} | _ | _ | 50 | μA | V _Q = 24 V | 1 | | Center of switching points: $(\Delta B_{\text{OP}} + \Delta B_{\text{RP}}) / 2$ | ΔB_{m} | -1 | 0 | 1 | mT | $-20 \text{ mT} < \Delta B$
< 20 mT ^{1) 2)}
f = 200 Hz | 2 | | Operate point | ΔB_{OP} | _ | _ | 0 | mT | f = 200 Hz,
ΔB = 20 mT | 2 | | Release point | ΔB_{RP} | 0 | _ | _ | mT | f = 200 Hz,
ΔB = 20 mT | 2 | | Hysteresis | ΔB_{H} | 0.5 | 1.5 | 2.5 | mT | f = 200 Hz,
ΔB = 20 mT | 2 | | Overvoltage protection | | | | | | | | | at supply voltage at output | V_{SZ} V_{QZ} | 27
27 | -
 - | 35
35 | V | $I_{\rm S}$ = 16 mA
$I_{\rm Q}$ = 16 mA | 1 | | Output rise time | t_{r} | _ | _ | 0.5 | μS | $I_{\rm Q}$ = 40 mA $C_{\rm L}$ = 10 pF | 1 | | Output fall time | t_{f} | _ | _ | 0.5 | μS | $I_{\rm Q}$ = 40 mA $C_{\rm L}$ = 10 pF | 1 | | Delay time | $t_{ m dop}$ $t_{ m drp}$ $t_{ m dop}$ - $t_{ m drp}$ |
 -
 - | _
_
0 | 25
10
15 | μs
μs
μs | f = 10 kHz
ΔB = 5 mT | 2 | | Filter input resistance | R_{C} | 35 | 43 | 52 | kΩ | 25°C ±2°C | 1 | ## **Electrical and Magnetic Parameters** Table 5 Electrical Characteristics (cont'd) | Parameter | Symbol | L | Limit Values | | | Test | Test | |---|-------------------------------|--------------|--------------|------------|----------|---------------------------|---------| | | | min. | typ. | max. | | Condition | Circuit | | Filter sensitivity to ΔB | S_{C} | _ | -5 | _ | mV/mT | _ | 1 | | Filter bias voltage | V_{C} | 1.6 | 2 | 2.4 | V | $\Delta B = 0$ | 1 | | Frequency | f | 3) | _ | 20000 | Hz | $\Delta B = 5 \text{ mT}$ | 2 | | Resistivity against mechanical stress (piezo) | $\Delta B_{m} \ \Delta B_{H}$ | -0.1
-0.1 | | 0.1
0.1 | mT
mT | F = 2 N | 2 4) | - 1) The Current consumption characteristic will be different and the specified values can slightly change - 2) Leakage currents at pin 4 should be avoided. The bias shift of $B_{\rm m}$ caused by a leakage current $I_{\rm L}$ can be calculated by: $\Delta B_{\rm m} = \frac{I_{\rm L} \times R_{\rm C}({\rm T})}{S_{\rm C}({\rm T})}$ - 3) For higher ΔB the values may exceed the limits like following | $\Delta B_{\rm m}$ | < | $0.05 \times \Delta B$ | - 4) Depends on filter capacitor $C_{\rm F}$. The cut-off frequency is given by $f=\frac{1}{2\pi\times R_{\rm C}\times C_{\rm F}}$. The switching points are guaranteed over the whole frequency range, but amplitude modification and phase shift due to the 1st order highpass filter have to be taken into account. Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at T_j = 25°C and the given supply voltage. Data Sheet 12 V 1.1, 2008-01 ## **Electrical and Magnetic Parameters** Figure 3 Test Circuit 1 Figure 4 Test Circuit 2 ## 6 Application Configurations Two possible applications are shown in **Figure 7** and **Figure 8** (Toothed and Magnet Wheel). The difference between two-wire and three-wire application is shown in **Figure 9**. ## **Gear Tooth Sensing** In the case of ferromagnetic toothed wheel application the IC has to be biased by the south or north pole of a permanent magnet (e.g. $SmCO_5$ (Vacuumschmelze VX145)) with the dimensions 8 mm \times 5 mm \times 3 mm) which should cover both Hall probes. The maximum air gap depends on: - the magnetic field strength (magnet used; pre-induction) and - the toothed wheel that is used (dimensions, material, etc.; resulting differential field) Figure 5 Sensor Spacing Figure 6 Tooth Wheel Dimensions Figure 7 TLE4921-5U, with Ferromagnetic Toothed Wheel Figure 8 TLE4921-5U, with Magnet Wheel Figure 9 Application Circuits Figure 10 System Operation ## 7 Typical Performance Characteristics ## Quiescent Current versus Supply Voltage # **Quiescent Current versus Temperature** # **Quiescent Current versus Output Current** # Saturation Voltage versus Temperature # Output Saturation Voltage versus $I_{\rm Q}$ @ 25°C $T_{\rm j}$ ## Center of Switching Points versus Temperature ## **Typical Performance Characteristics** # Saturation Voltage versus Supply Voltage ## Hysteresis versus Temperature # Minimum Switching Field versus Frequency # Minimum Switching Field versus Frequency Delay Time between Switching Threshold ΔB and Falling Edge of $V_{\rm OUT}$ at $T_{\rm i}$ = 25°C Delay Time between Switching Threshold ΔB and Rising Edge of $V_{\rm OUT}$ at $T_{\rm i}$ = 25°C ## **Delay Time versus Differential Field** # AED03179 t_{cl} 9 8 7 t_{clrp} 6 t_{clrp} 6 t_{clrp} 6 t_{clrp} 6 t_{clrp} 8 t_{clrp} 6 t_{clrp} 6 t_{clrp} 8 t_{clrp} 6 t_{clrp} 6 t_{clrp} 7 t_{clrp} 8 t_{clrp} 6 t_{clrp} 7 t_{clrp} 8 t_{clrp} 8 ## **Delay Time versus Temperature** Rise and Fall Time versus Temperature ## Rise and Fall Time versus Output Current ## **Capacitor Voltage versus Temperature** ## # **Switching Thresholds versus Mechanical Stress** ## **Filter Sensitivity versus Temperature** # Filter Input Resistance versus Temperature # Delay Time for Power on ($V_{\rm S}$ Switching from 0 V to 4.5 V) $t_{\rm pon}$ versus Temp. ## Periodjitter (1 σ) versus Temperature Table 6 Electro Magnetic Compatibility ref. DIN 40839 part 1; test circuit 1 | Parameter | Symbol | Level/Typ | Status | |--------------|----------|--------------|--------| | Testpulse 1 | V_{LD} | IV / – 100 V | С | | Testpulse 2 | | IV /100 V | В | | Testpulse 3a | | IV / – 150 V | С | | Testpulse 3b | | IV / 100 V | С | | Testpulse 4 | | IV / – 7 V | С | | Testpulse 5 | | IV / 86.5 V | С | Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Figure 11 Distance Chip to Upper Side of IC ## **Package Outlines** ## 8 Package Outlines Figure 12 PG-SSO-4-1 (Plastic Single Small Outline Package) www.infineon.com Published by Infineon Technologies AG ## **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Infineon: TLE4921-5U