Data Sheet September 2013 File Number 2253.2 # N-Channel Power MOSFET 50V, 30A, 40 mΩ This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from integrated circuits. Formerly developmental type TA9771. # **Ordering Information** | PART NUMBER | PACKAGE | BRAND | |--------------|----------|-------| | BUZ11-NR4941 | TO-220AB | BUZ11 | NOTE: When ordering, use the entire part number. #### **Features** - 30A, 50V - $r_{DS(ON)} = 0.040\Omega$ - · SOA is Power Dissipation Limited - · Nanosecond Switching Speeds - · Linear Transfer Characteristics - · High Input Impedance - · Majority Carrier Device - Related Literature - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards" # Symbol # **Packaging** ### JEDEC TO-220AB # **Absolute Maximum Ratings** $T_C = 25^{\circ}C$, Unless Otherwise Specified | | BUZ11 | UNITS | |--|------------|-------| | Drain to Source Breakdown Voltage (Note 1) | 50 | V | | Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) | 50 | V | | Continuous Drain Current $T_C = 30^{\circ}CI_D$ | 30 | Α | | Pulsed Drain Current (Note 3) | 120 | Α | | Gate to Source Voltage | ±20 | V | | Maximum Power Dissipation | 75 | W | | Linear Derating Factor | 0.6 | W/oC | | Operating and Storage Temperature | -55 to 150 | °C | | DIN Humidity Category - DIN 40040 | E | | | IEC Climatic Category - DIN IEC 68-1 | 55/150/56 | | | Maximum Temperature for Soldering | | | | Leads at 0.063in (1.6mm) from Case for 10sT _L | 300 | °C | | Package Body for 10s, See Techbrief 334 | 260 | °C | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. $T_J = 25^{\circ}C$ to $125^{\circ}C$. **Electrical Specifications** T_C = 25°C, Unless Otherwise Specified | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |--|----------------------|--|-----|--------|------|-------| | Drain to Source Breakdown Voltage | BV _{DSS} | $I_D = 250 \mu A, V_{GS} = 0 V$ | 50 | - | - | V | | Gate Threshold Voltage | V _{GS(TH)} | V _{GS} = V _{DS} , I _D = 1mA (Figure 9) | 2.1 | 3 | 4 | V | | Zero Gate Voltage Drain Current | I _{DSS} | $T_J = 25^{\circ}C$, $V_{DS} = 50V$, $V_{GS} = 0V$ | - | 20 | 250 | μΑ | | | | T _J = 125°C, V _{DS} = 50V, V _{GS} = 0V | - | 100 | 1000 | μΑ | | Gate to Source Leakage Current | I _{GSS} | V _{GS} = 20V, V _{DS} = 0V | - | 10 | 100 | nA | | Drain to Source On Resistance (Note 2) | r _{DS(ON)} | I _D = 15A, V _{GS} = 10V (Figure 8) | - | 0.03 | 0.04 | Ω | | Forward Transconductance (Note 2) | 9fs | V _{DS} = 25V, I _D = 15A (Figure 11) | 4 | 8 | - | S | | Turn-On Delay Time | t _{d(ON)} | V_{CC} = 30V, I_D \approx 3A, V_{GS} = 10V, R_{GS} = 50 Ω , R_L = 10 Ω | - | 30 | 45 | ns | | Rise Time | t _r | | - | 70 | 110 | ns | | Turn-Off Delay Time | t _d (OFF) | | - | 180 | 230 | ns | | Fall Time | t _f | | - | 130 | 170 | ns | | Input Capacitance | C _{ISS} | V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 10) | - | 1500 | 2000 | pF | | Output Capacitance | Coss | | - | 750 | 1100 | pF | | Reverse Transfer Capacitance | C _{RSS} | | - | 250 | 400 | pF | | Thermal Resistance Junction to Case | R _{θJC} | | | ≤ 1.67 | | °C/W | | Thermal Resistance Junction to Ambient | R ₀ JA | | | ≤75 | | °C/W | # **Source to Drain Diode Specifications** | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |------------------------------------|------------------|--|-----|------|-----|-------| | Continuous Source to Drain Current | I _{SD} | $T_{C} = 25^{\circ}C$ | - | - | 30 | Α | | Pulsed Source to Drain Current | I _{SDM} | $T_{C} = 25^{\circ}C$ | - | - | 120 | Α | | Source to Drain Diode Voltage | V _{SD} | $T_J = 25^{\circ}C$, $I_{SD} = 60A$, $V_{GS} = 0V$ | - | 1.7 | 2.6 | V | | Reverse Recovery Time | t _{rr} | $T_J = 25^{\circ}C$, $I_{SD} = 30A$, $dI_{SD}/dt = 100A/\mu s$, | - | 200 | - | ns | | Reverse Recovery Charge | Q _{RR} | V _R = 30V | - | 0.25 | - | μС | #### NOTES: - 2. Pulse Test: Pulse width \leq 300ms, duty cycle \leq 2%. - 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). # Typical Performance Curves Unless Otherwise Specified FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS # Typical Performance Curves Unless Otherwise Specified (Continued) FIGURE 6. TRANSFER CHARACTERISTICS FIGURE 8. DRAINTO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 7. DRAINTO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 9. GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. TRANSCONDUCTANCE vs DRAIN CURRENT # Typical Performance Curves Unless Otherwise Specified (Continued) FIGURE 12. SOURCE TO DRAIN DIODE VOLTAGE FIGURE 13. GATE TO SOURCE VOLTAGE vs GATE CHARGE # Test Circuits and Waveforms FIGURE 14. SWITCHING TIME TEST CIRCUIT FIGURE 16. GATE CHARGETEST CIRCUIT FIGURE 15. RESISTIVE SWITCHING WAVEFORMS FIGURE 17. GATE CHARGE WAVEFORMS ON Semiconductor and 🕼 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### PUBLICATION ORDERING INFORMATION #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative