MJ15001 (NPN), MJ15002 (PNP)

Complementary Silicon Power Transistors

The MJ15001 and MJ15002 are power transistors designed for high power audio, disk head positioners and other linear applications.

Features

- High Safe Operating Area
- For Low Distortion Complementary Designs
- High DC Current Gain
- These Devices are Pb-Free and are RoHS Compliant*

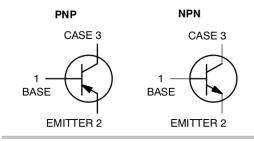
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	140	Vdc
Collector-Base Voltage	V _{CBO}	140	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current - Continuous	Ic	15	Adc
Base Current - Continuous	I _B	5	Adc
Emitter Current – Continuous	ΙE	20	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.875	°C/W
Maximum Lead Temperature for Soldering Purposes 1/16" from Case for ≤ 10 secs	TL	265	°C



ON Semiconductor®

http://onsemi.com

20 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 140 VOLTS, 250 WATTS

SCHEMATIC

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

WW = Work Week
MEX = Country of Orgin

ORDERING INFORMATION

Device	Package	Shipping
MJ15001G	TO-204AA (Pb-Free)	100 Units/Tray
MJ15002G	TO-204AA (Pb-Free)	100 Units/Tray

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ15001 (NPN), MJ15002 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	'	•		•
Collector–Emitter Sustaining Voltage (Note 1) $(I_C, = 200 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	140	_	Vdc
Collector Cutoff Current $(V_{CE} = 140 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc})$ $(V_{CE} = 140 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, T_C = 150^{\circ}\text{C})$	I _{CEX}	- -	100 2.0	μAdc mAdc
Collector Cutoff Current (V _{CE} = 140 Vdc, I _B = 0)	I _{CEO}	-	250	μAdc
Emitter Cutoff Current $(V_{EB} = 5 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	100	μAdc
SECOND BREAKDOWN	,	•		•
Second Breakdown Collector Current with Base Forward Biased $(V_{CE} = 40 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$ $(V_{CE} = 100 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$	I _{S/b}	5.0 0.5	_ _	Adc
ON CHARACTERISTICS	'	•		
DC Current Gain (I _C = 4 Adc, V _{CE} = 2 Vdc)	h _{FE}	25	150	-
Collector-Emitter Saturation Voltage (I _C = 4 Adc, I _B = 0.4 Adc)	V _{CE(sat)}	-	1.0	Vdc
Base-Emitter On Voltage (I _C = 4 Adc, V _{CE} = 2 Vdc)	V _{BE(on)}	-	2.0	Vdc
DYNAMIC CHARACTERISTICS		•		
Current-Gain — Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f _{test} = 0.5 MHz)	f _T	2.0	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	-	1000	pF

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

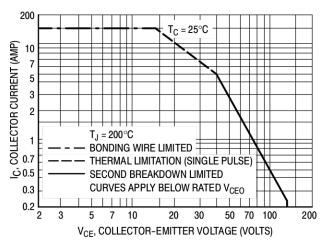
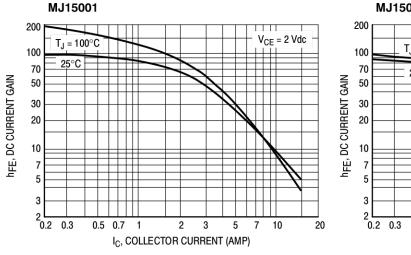


Figure 1. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J\,(pk)}=200^\circ C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.


MJ15001 (NPN), MJ15002 (PNP)

TYPICAL CHARACTERISTICS 1000 700 $T_J = 25^{\circ}C$ 500 300 C_{ib} C, CAPACITANCE (pF) 200 100 70 50 30 MJ15001 (NPN) MJ15002 (PNP) 20 10 1.5 2 3 50 70 100 V_R, REVERSE VOLTAGE (VOLTS)

f_T, CURRENT-GAIN — BANDWIDTH PRODUCT (MHz) 10 MJ15002 (PNP) $T_J = 25^{\circ}C$ $V_{CE} = 10 V$ $f_{test} = 0.5 \text{ MHz}$ MJ15001 0 <u>∟</u> 0.1 0.2 0.3 0.5 0.7 2 3 5 7 10 IC, COLLECTOR CURRENT (AMP)

Figure 2. Capacitances

Figure 3. Current-Gain — Bandwidth Product

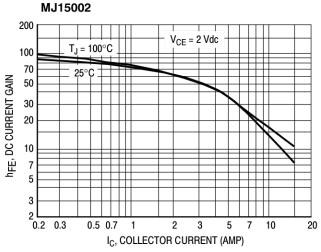
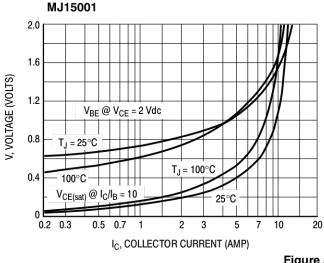



Figure 4. DC Current Gain

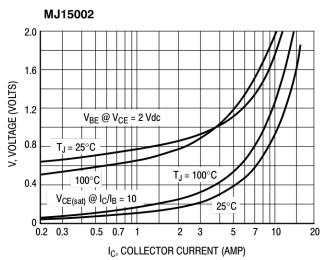
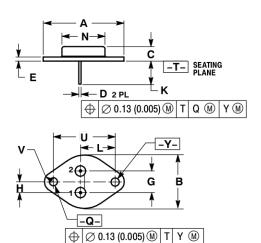



Figure 5. "On" Voltages

MJ15001 (NPN), MJ15002 (PNP)

PACKAGE DIMENSIONS

TO-204 (TO-3) **CASE 1-07 ISSUE Z**

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- CONTROLLING DIMENSION: INCH.
 ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.550	REF	39.37	REF
В		1.050		26.67
С	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
Н	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N		0.830		21.08
Q	0.151	0.165	3.84	4.19
U	1.187	1.187 BSC		BSC
V	0.131	0.188	3.33	4.77

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, are registered trademarks or semiconductor and a registered trademarks of semiconductor components industries, LCC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MJ15001 MJ15002 MJ15002G