October 2014 # 2N3904 / MMBT3904 / PZT3904 **NPN General-Purpose Amplifier** ## **Description** This device is designed as a general-purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier. ## **Ordering Information** | Part Number | Marking | Package | Packing Method | Pack Quantity | |-------------|---------|------------|--------------------|---------------| | 2N3904BU | 2N3904 | TO-92 3L | Bulk | 10000 | | 2N3904TA | 2N3904 | TO-92 3L | Ammo 2000 | | | 2N3904TAR | 2N3904 | TO-92 3L | Ammo 2000 | | | 2N3904TF | 2N3904 | TO-92 3L | Tape and Reel 2000 | | | 2N3904TFR | 2N3904 | TO-92 3L | Tape and Reel 2000 | | | MMBT3904 | 1A | SOT-23 3L | Tape and Reel 3000 | | | PZT3904 | 3904 | SOT-223 4L | Tape and Reel 2500 | | ## Absolute Maximum Ratings(1), (2) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted. | Symbol | Parameter | Value | Unit | |----------------------------------|--|------------|------| | V _{CEO} | Collector-Emitter Voltage | 40 | V | | V _{CBO} | Collector-Base Voltage | 60 | V | | V _{EBO} | Emitter-Base Voltage | 6.0 | V | | I _C | Collector Current - Continuous | 200 | mA | | T _{J,} T _{STG} | Operating and Storage Junction Temperature Range | -55 to 150 | °C | #### Notes: - 1. These ratings are based on a maximum junction temperature of 150°C. - 2. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty cycle operations. #### **Thermal Characteristics** Values are at T_A = 25°C unless otherwise noted. | Symbol | Parameter | Maximum | | | Unit | |-----------------|---|---------|-------------------------|------------------------|-------| | | Farameter | 2N3904 | MMBT3904 ⁽³⁾ | PZT3904 ⁽⁴⁾ | Onit | | В | Total Device Dissipation | 625 | 350 | 1,000 | mW | | P _D | Derate Above 25°C | 5.0 | 2.8 | 8.0 | mW/°C | | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 83.3 | | | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | 357 | 125 | °C/W | #### Notes: - 3. Device is mounted on FR-4 PCB 1.6 inch X 1.6 inch X 0.06 inch. - 4. Device is mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm, mounting pad for the collector lead minimum 6 cm². ## **Electrical Characteristics** Values are at $T_A = 25$ °C unless otherwise noted. | Symbol | Parameter | Conditions | Min. | Max. | Unit | |-----------------------|--------------------------------------|--|------|------|------| | OFF CHARA | ACTERISTICS | | • | | • | | V _{(BR)CEO} | Collector-Emitter Breakdown Voltage | I _C = 1.0 mA, I _B = 0 | 40 | | V | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 10 \mu A, I_E = 0$ | 60 | | V | | V _{(BR)EBO} | Emitter-Base Breakdown Voltage | $I_E = 10 \mu A, I_C = 0$ | 6.0 | | V | | I _{BL} | Base Cut-Off Current | V _{CE} = 30 V, V _{EB} = 3 V | | 50 | nA | | I _{CEX} | Collector Cut-Off Current | V _{CE} = 30 V, V _{EB} = 3 V | | 50 | nA | | | CTERISTICS ⁽⁵⁾ | | | 1 | | | | | I _C = 0.1 mA, V _{CE} = 1.0 V | 40 | | | | | | I _C = 1.0 mA, V _{CE} = 1.0 V | 70 | | 1 | | h _{FE} | DC Current Gain | I _C = 10 mA, V _{CE} = 1.0 V | 100 | 300 | 1 | | | | I _C = 50 mA, V _{CE} = 1.0 V | 60 | | 1 | | | | I _C =100 mA, V _{CE} = 1.0V | 30 | | 1 | | | | I _C = 10 mA, I _B = 1.0 mA | | 0.2 | V | | V _{CE} (sat) | Collector-Emitter Saturation Voltage | I _C = 50 mA, I _B = 5.0 mA | | 0.3 | | |) / (- 1) | Base-Emitter Saturation Voltage | I _C = 10 mA, I _B = 1.0 mA | 0.65 | 0.85 | V | | V _{BE} (sat) | | I _C = 50 mA, I _B = 5.0 mA | | 0.95 | | | SMALL SIG | NAL CHARACTERISTICS | | | | | | f _T | Current Gain - Bandwidth Product | I _C = 10 mA, V _{CE} = 20 V,
f = 100 MHz | 300 | | MHz | | C _{obo} | Output Capacitance | V _{CB} = 5.0 V, I _E = 0,
f = 100 kHz | | 4.0 | pF | | C _{ibo} | Input Capacitance | V _{EB} = 0.5 V, I _C = 0,
f = 100 kHz | | 8.0 | pF | | NF | Noise Figure | I_C = 100 μA, V_{CE} = 5.0 V,
R_S = 1.0 kΩ,
f = 10 Hz to 15.7 kHz | | 5.0 | dB | | SWITCHING | CHARACTERISTICS | • | | | | | t_d | Delay Time | $V_{CC} = 3.0 \text{ V}, V_{BE} = 0.5 \text{ V}$
$I_{C} = 10 \text{ mA}, I_{B1} = 1.0 \text{ mA}$ | | 35 | ns | | t _r | Rise Time | | | 35 | ns | | t _s | Storage Time | $V_{CC} = 3.0 \text{ V, I}_{C} = 10 \text{ mA,}$ | | 200 | ns | | t _f | Fall Time | $I_{B1} = I_{B2} = 1.0 \text{ mA}$ | | 50 | ns | #### Note: 5. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2.0%. ## **Typical Performance Characteristics** Figure 1. Typical Pulsed Current Gain vs. Collector Current Figure 3. Base-Emitter Saturation Voltage vs. Collector Current Figure 5. Collector Cut-Off Current vs. Ambient Temperature Figure 2. Collector-Emitter Saturation Voltage vs. Collector Current Figure 4. Base-Emitter On Voltage vs. Collector Current Figure 6. Capacitance vs. Reverse Bias Voltage ## **Typical Performance Characteristics** (Continued) Figure 7. Noise Figure vs. Frequency Figure 8. Noise Figure vs. Source Resistance Figure 9. Current Gain and Phase Angle vs. Frequency Figure 10. Power Dissipation vs. Ambient Temperature Figure 11. Turn-On Time vs. Collector Current Figure 12. Rise Time vs. Collector Current ## **Typical Performance Characteristics** (Continued) Figure 13. Storage Time vs. Collector Current Figure 14. Fall Time vs. Collector Current Figure 15. Current Gain Figure 16. Output Admittance Figure 17. Input Impedance Figure 18. Voltage Feedback Ratio ## **Test Circuits** 3.0 V Figure 19. Delay and Rise Time Equivalent Test Circuit Figure 20. Storage and Fall Time Equivalent Test Circuit ### NOTES: UNLESS OTHERWISE SPECIFIED - DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZA03FREV3. FAIRCHILD SEMICONDUCTOR. - B. C. D. E. NOTES: UNLESS OTHERWISE SPECIFIED - DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZAO3DREV4. DETAIL A SCALE: 2X ## NOTES: UNLESS OTHERWISE SPECIFIED - A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. - D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M 2009. - E) DRAWING FILE NAME: MA03DREV11 #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ OPTOPLANAR® SYSTEM GENERAL®* AccuPower™ AttitudeEngine™ FRFET® Global Power Resource SM Awinda[®] TinyBoost[®] AX-CAP®* GreenBridge™ TinyBuck[®] Power Supply WebDesigner™ BitSiC™ Green FPS™ TinyCalc™ PowerTrench[©] Build it Now™ Green FPS™ e-Series™ TinyLogic[®] PowerXS^T CorePLUS™ TINYOPTO™ Gmax™ Programmable Active Droop™ CorePOWER™ TinyPower™ GTO™ **QFET** TinyPWM™ CROSSVOLT™ IntelliMAX™ QS™ TinyWire™ CTL™ ISOPLANAR™ Quiet Series™ Current Transfer Logic™ Making Small Speakers Sound Louder TranSiC™ RapidConfigure™ DEUXPEED[®] and Better™ TriFault Detect™ Dual Cool™ TRUECURRENT®* MegaBuck™ Saving our world, 1mW/W/kW at a time™ EcoSPARK® MICROCOUPLER™ սSerDes™ SignalWise™ EfficientMax™ MicroFET™ SmartMax™ ESBC™ MicroPak™ SMART START™ ■® MicroPak2™ LIHC Solutions for Your Success™ MillerDrive™ Ultra FRFET™ Fairchild® SPM[®] MotionMax™ UniFET™ Fairchild Semiconductor® **STEALTH™** MotionGrid® VCX^{TM} FACT Quiet Series™ SuperFET[®] MTi[®] VisualMax™ FACT SuperSOT™-3 $MTx^{\tiny{\circledR}}$ VoltagePlus™ SuperSOT™-6 FastvCore™ $MVN^{^{\tiny{\circledR}}}$ XS™ FETBench™ SuperSOT™-8 mWSaver® Xsens™ FPS™ SupreMOS® OptoHiT™ 仙童® SyncFET™ OPTOLOGIC® Sync-Lock™ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### AUTHORIZED USE Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Definition of Terms | | | | | |--------------------------|---|---|--|--| | Datasheet Identification | heet Identification Product Status Definition | | | | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | Rev. 177 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.